163,310 species and infraspecific names are in the database, 22,769 images, 62,922 bibliographic items, 478,460 distributional records.

Chlorella vulgaris Beijerinck 1890

Empire Eukaryota
Kingdom Plantae
Subkingdom Viridiplantae
Infrakingdom Chlorophyta infrakingdom
Phylum Chlorophyta
Subphylum Chlorophytina
Class Trebouxiophyceae
Order Chlorellales
Family Chlorellaceae
Genus Chlorella


click on thumbnail for larger version.

Chlorella vulgaris Beijerinck
Authentic Strain SAG 211-11b; Culture Material from Beijerinck 1889; Pond, Delft, NL; 1000x, DIC. 19 Mar 2019. 19 Mar 2019. Maike Lorenz. © Maike Lorenz, SAG (epsag@uni-goettingen.de)..

Chlorella vulgaris Beijerinck
Original plate; Chlorella vulgaris is Fig. 2. 31 Jan 2012. M.D. Guiry. © M.D. Guiry.


Haematococcus droebakensis Wollenweber

Chlorella vulgaris Beijerinck Authentic Strain SAG 211-11b; Culture Material from Beijerinck 1889; Pond, Delft, NL; 1000x, DIC. 19 Mar 2019
© Maike Lorenz, SAG (epsag@uni-goettingen.de).

Publication details
Chlorella vulgaris Beijerinck 1890: 758, pl. VII [7]7: fig. 2 a-d

Published in: Beijerinck, M.W. (1890). Culturversuche mit Zoochlorellen, Lichenengonidien und anderen niederen Algen. Botanische Zeitung 47: 725-739, 741-754, 757-768, 781-785.
 Download PDF

Publication date: 1890

Type species
This is the type species (lectotype) of the genus Chlorella.

Status of name
This name is of an entity that is currently accepted taxonomically.

Type information
Type locality: "Am 10. April 1889 hemerkte ich, dass das Wasser eines seichten Teiches in der Nähe von Delft durch mikroskopische Algen in- tensiv grün gefärbt war." [pool near Delft, The Netherlands] (Beijerinck 1890: 725/726). Notes: “On April 10, 1889, I noticed that the water of a shallow pond near Delft was colored intensely green by microscopic algae. The green color was almost as strong as that of the grass on the bank; printed letter could no longer be read through a layer of one centimeter. [...] In the autumn of 1888 the pond had been the hearth of a violent putrefaction with strong evolution of gas and the formation of sulphurous iron. [...] At the beginning of June the green color disappeared, so that at the end of this month nothing of it was noticeable. Stored in beakers in the laboratory, the water soon spoiled as a result of the proliferation of reducing organisms, the green cells fell to the ground and were dead after 14 days (1). [...] The green cells were so small that when the water was filtered through double Swedish filter paper, it was almost as green as when it was infused/ poored onto the filter.”

Origin of species name
Adjective (Latin), common, general, ordinary (Stearn 1973).

Heterotypic Synonym(s)
Chlorella pyrenoidosa var. duplex (Kützing) West
Pleurococcus beijerinckii Artari 1892
Chlorella communis Artari 1906
Chlorella vulgaris var. viridis Chodat 1913
Chlorella terricola Gollerbach [Hollerbach] 1936
Chlorella candida Shihira & R.W.Krauss 1965

Nomenclatural notes
Martinus Willem Beijerinck (1861-1931), who also used the spelling Beyerinck, at least in German publications, was a Dutch microbiologist and botanist. Born in Amsterdam, he studied at the Technical School of Delft, where he was awarded the degree of Chemical Engineer in 1872. He obtained his Doctor of Science degree from the University of Leiden in 1877 ( Wikipedia). He says, however, "Wohl identisch mit Chlorococcum protogenitum Rabenhorst." [Probably identical to Chlorococcum protogenitum Rabenhorst.] but this does not invalidate his name. - (31 Jan 2012) - M.D. Guiry

Usage notes
Potential wastewater treatment (Perez-Garcia et al. 2010, 2011). Suitable pioneer organism for soil restoration (Lin & Wu 2014). - (8 Sep 2010) - Wendy Guiry

General environment
This is a freshwater/terrestrial species.

Detailed distribution with sources (Click to Load)

Key references
Andreyeva, V.M (1998). Poczvennye i aerophilnye zelyonye vodorosli (Chlorophyta: Tetrasporales, Chlorococcales, Chlorosarcinales). Terrestrial and aerophilic green algae (Chlorophyta: Tetrasporales, Chlorococcales, Chlorosarcinales). pp. [1]-349, [2], 108 pls. St Petersberg: "NAUKA".

Czerwik-Marcinkowska, J. & Mrozinska, T. (2011). Algae and cyanobacteria in caves of the Polish Jura. Polish Botanical Journal 56(2): 203-243, 21 figs.

Ettl, H. & Gärtner, G. (1995). Syllabus der Boden-, Luft- und Flechtenalgen. pp. i-vii, 1-721. Stuttgart: Gustav Fischer.

Fott, B. & Nováková, M. (1969). A monograph of the genus Chlorella. The freshwater species. In: Studies in Phycology. (Fott, B. Eds), pp. 10-74. Prague: Academia Publishing House of the Czechosolvak Academy of Sciences.

Gors, M., Schumann, R., Gustavs, L. & Karsten, U. (2010). The potential of ergosterol as chemotaxonomic marker to differenciate between "Chlorella" species (Chlorophyta) (Note). Journal of Phycology 46(6): 1296-1300.

Hindák, F. (1980). Studies on the chlorococcal algae (Chlorophyceae). II. Biologicke Práce 26: 1-195.

Hindák, F. (1984). Studies on the chlorococcal algae (Chlorophyceae) III. Biologické Práce 30: 1-312.

Hirose, H., Yamagishi, T. & Akiyama, M. (1977). Illustrations of the Japanese fresh-water algae. pp. [8 col. pls], [1]-933, 244 pls in text. Tokyo: Uchida Rokakuho Publishing Co., Ltd. [in Japanese]

Hu, H. & Wei, Y. (2006). The freshwater algae of China. Systematics, taxonomy and ecology. pp. [4 pls of 16 figs], [i-iv], i-xv, 1-1023. China: www.sciencep.com.

Khaybullina, L.S., Gaysina, L.A., Johansen, J.R. & Krautova, M. (2010). Examination of the terrestrial algae of the Great Smoky Mountains National Park, USA. Fottea, Olomouc 10: 201-215.

Komárek, J. & Fott, B. (1983). Chlorophyceae (Grünalgen) Ordnung: Chlorococcales. Das Phytoplankton des Süsswassers. In: Das Phytoplankton des Süsswassers (Die Binnengewässer) XVI. (Huber-Pestalozzi, G. Eds), pp. [1]-x, [1]-1044. Stuttgart: E. Schweizerbart'sche Verlangbuchhandlung (Nägele u. Obermiller).

Korshikov, A.A. (1953). Viznachnik prisnovodnihk vodorostey Ukrainsykoi RSR [Vyp] V. Pidklas Protokokovi (Protococcineae). Bakuol'ni (Vacuolales) ta Protokokovi (Protococcales) [The Freshwater Algae of the Ukrainian SSR. V. Sub-Class Protococcineae. Vacuolales and Protococcales]. pp. 1-439. Kyjv [Kiev]: Akad. NAUK URSR.

Krienitz, L., Hegewald, E.H., Hepperle, D., Huss, V.A.R., Rohr, T. & Wolf, M. (2004). Phylogenetic relationship of Chlorella and Parachlorella gen. nov. (Chlorophyta, Trebouxiophyceae). Phycologia 43: 529-542, 19 figs, 3 tables.

Lin, C.S. & Wu, J.T. (2014). Tolerance of soil algae and cyanobacteria to drought stress. Journal of Phycology 50(1): 131-139.

Phillipson, J. (1935). Some algae of Victorian soils. Proceedings of the Royal Society of Victoria, New Series 47: 262-287, 33 figs.

Rindi, F. & Guiry, M.D. (2004). Composition and spatial variability of terrestrial algal assemblages occurring at the bases of urban walls in Europe. Phycologia 43: 225-235.

Shahnaz, A., Zarina, A., Masud-ul-Hasan & Shameel, M. (2007). Survey of some Volvocophyta Shameel from Lahore, Pakistan. International Journal of Phycology and Phycochemistry 3(2): 205-212.

Shihira, I. & Krauss, R.W. (1965). Chlorella. Physiology and taxonomy of forty-one isolates. pp. 1-97. Maryland: University of Maryland, College Park.

Skuja, H. (1956). Taxonomische und biologische Studien über das Phytoplankton schwedischer Binnengewässer. Nova Acta Regiae Societatis Scientiarum Upsaliensis, Series IV 16(3): 1-404, + 63 pls.

Toepel, J., Langner, U. & Wilhelm, C. (2005). Combination of flow cytometry and single cell absorption spectroscopy to study the phytoplankton structure and to calculate the chl a specific absorption coefficients at the taxon level. Journal of Phycology 41(6): 1099-1109.

Tsarenko, P.M. & John, D.M. (2011). Phylum Chlorophyta. Order Chlorellales. In: The freshwater algal flora of the British Isles. An identification guide to freshwater and terrestrial algae. Second edition. (John, D.M., Whitton, B.A. & Brook, A.J. Eds), pp. 475-499. Cambridge: Cambridge University Press.

Tsarenko, P.M. (2011). Trebouxiophyceae. In: Algae of Ukraine: diversity, nomenclature, taxonomy, ecology and geography. Volume 3: Chlorophyta. (Tsarenko, P.M., Wasser, S.P. & Nevo, E. Eds), pp. 61-108. Ruggell: A.R.A. Gantner Verlag K.-G..

Yamamoto, M., Nozaki, H., Miyazawa, Y., Koide, T. & Kawano, S. (2003). Relationship between presence of a mother cell wall and speciation in the unicellular microalga Nannochloris (Chlorophyta). Journal of Phycology 39(1): 172-184.

Created: 11 April 2002 by M.D. Guiry

Verified by: 09 September 2021 by M.D. Guiry

Accesses: This record has been accessed by users 39646 times since it was created.

Verification of data
Users are responsible for verifying the accuracy of information before use, as noted on the website Content page.

(Please note: only references with the binomials in the title are included. The information is from the Literature database.)

Cacco, G. & Ferrari, G. (1975). Isolation of nitrosoguanidine-induced Chlorella vulgaris mutants with high methionine content. Journal of Phycology 11: 139-141, 3 tables.
Caporgno, M.P., Olkiewicz, M., Fortuny, A., Stuber, F., Fabregat, A., Font, J., Pruvost, J., Lepine, O., Legrand, J. & Bengoa, C. (2016). Evaluation of different strategies to produce biofuels from Nannochloropsis oculata and Chlorella vulgaris. Fuel Processing Technology 144: 132-138.
Chia, M.A., Lombardi, A.T., Da Graca Gama Melao, M. & Parrish, C.C. (2013). Effects of cadmium and nitrogen on lipid composition of Chlorella vulgaris (Trebouxiophyceae, Chlorophyta). European Journal of Phycology 48(1): 1-11.
Coder, D.M. & Starr, M.P. (1978). Antagonistic association of the chlorellavorus bacterium ("Belloviobrio" chlorellavorus) with Chlorella vulgaris. Cur. Microbiol. 1: 59-64.
Creed, I.F., Havas, M. & Trick, C.G. (1990). Effects of arsenate on growth of nitrogen- and phosphorus-limited Chlorella vulgaris (Chlorophyceae) isolates. Journal of Phycology 26: 641-650.
de-Bashan, L.E., Antoun, H. & Bashan, Y. (2008). Involvement of indole-3-acetic acid produced by the growth-promoting bacterium Azospirillum spp. in promoting growth of Chlorella vulgaris. Journal of Phycology 44: 938-947.
de-Bashan, L.E., Magallon, P., Antoun, H. & Bashan, Y. (2008). Role of glutamate dehydrogenase and glutamine synthetase in Chlorella vulgaris during assimilation of ammonium when jointly immobilized with the microalgae-growth-promoting bacterium Azospirillum brasilense. Journal of Phycology 44: 1188-1196.
de-Bashan, L.E., Schmid, M., Rothballer, M., Hartmann, A. & Bashan, Y. (2011). Cell-cell interaction in the eukaryote-prokaryote model of the microalgae Chlorella vulgaris and the bacterium Azospirillum brasilense immobilized in polymer beads. Journal of Phycology 47(6): 1350-1359.
Eixler, S., Karsten, U. & Selig, U. (2006). Phosphorus storage in Chlorella vulgaris (Trebouxiophyceae, Chlorophyta) cells and its dependence on phosphate supply. Phycologia 45: 53-60.
Escapa, C., Coimbra, R.N., Paniagua, S., García, A.I. & Otero, M. (2017). Comparison of the culture and harvesting of Chlorella vulgaris and Tetradesmus obliquus for the removal of pharmaceuticals from water. Journal of Applied Phycology 29(3): 1179-1193.
Evens, T.J. & Niedz, R.P. (2010). Quantification of nutrient-replete growth rates in five-ion hyperspace for Chlorella vulgaris (Trebouxiophyceae) and Peridinium cinctum (Dinophyceae). European Journal of Phycology 45(3): 247-257.
Ferro, L., Colombo, M., Posadas, E., Funk, C. & Muñoz, R. (2018). Elucidating the symbiotic interactions between a locally isolated microalga Chlorella vulgaris and its co-ocurring bacterium Rhizobium sp. in synthetic municipal wastewater. Journal of Applied Phycology 31: 2299-2310.
Gouveia, L., Choubert, G., Gomes, E., Rema, P. & Empis, J. (1998). Use of Chlorella vulgaris as a carotenoid source for rainbow trout: effect of dietary lipid content on pigmentation, digestibility and retention in the muscle tissue.. Aquaculture International 6: 269-279.
Haberkorn, I., Walser, J.-C., Helisch, H., Böcker, L., Belz, S., Schuppler, M., Fasoulas, S. & Mathys, A. (2020). Characterization of Chlorella vulgaris (Trebouxiophyceae) associated microbial communities. Journal of Phycology 56(5): 1308-1322.
Hosmani, S.P. (1976). Effect of extract of Microcystis aeruginosa on the growth of Chlorella vulgaris. Beitr. Biol. Pflanzenphysiol 51: 321-324.
Kong, S.-K. & Toshiuki, N. (2002). Activity of Chlorella vulgaris associated by Escherichia coli W3110 on removal of total organic carbon in continuous river water flow system. Algae 17(3): 195-199, 4 figs, 2 tables.
Maeda, S., Mizoguchi, M., Ohki, A. & Takeshita, T. (1990). Bioaccumulation of Zinc and Cadmium in freshwater alga, Chlorella vulgaris .1. toxicity and accumulation. Chemosphere 21(8): 953-963.
Maeda, S., Mizoguchi, M., Ohki, A., Inanaga, J. & Takeshita, T. (1990). Bioaccumulation of Zinc and Cadmium in freshwater alga, Chlorella vulgaris .2. association mode of the metals and cell tissue. Chemosphere 21(8): 965-973.
Mahdy, A., Méndez, L., Tomás-Pejó, E., Morales, M.M., Ballesteros, M. & González-Fernández, C. (2016). Influence of enzymatic hydrolysis on the biochemical methane potential of Chlorella vulgaris and Scenedesmus sp. Journal of Chemical Technology and Biotechnology 91(5): 1299-1305.
Martinez, F., Ascaso, C. & Orus, M.I. (1991). Morphometric and stereologic analysis of Chlorella vulgaris under heterotrophic growth conditions. Ann Bot 67(3): 239-245.
Muñoz, M.J., Ramos, C. & Tarazona, J.V. (1996). Bioaccumulation and toxicity of hexachlorobenzene in Chlorella vulgaris and Daphnia magna. Aquatic Toxicology 35: 211-220.
Müller, J., Friedl, T., Hepperle, D., Lorenz, M. & Day, J.G. (2005). Distinction between multiple isolates of Chlorella vulgaris (Chlorophyta, Trebouxiophyceae) and testing for conspecificity using amplified fragment length polymorphism and ITS rDNA sequences. Journal of Phycology 41: 1236-1247.
Nasir, N.T.B.M., Sahin, S., Cakmak, Z.E. & Cakmak, T. (2017). Optimization of ultrasonic-assisted extraction via multiresponse surface for high antioxidant recovery from Chlorella vulgaris (Chlorophyta). Phycologia 56(5): 561-569.
Oyamada, N., Takahashi, G. & Ishizaki, M. (1991). Methylation of inorganic selenium compounds by freshwater green algae, Ankistrodesmus sp., Chlorella vulgaris and Selenastrum sp.. Eisei Kagaku-Japan J Tox Envi 37(2): 83-88.
Patterson, G.W. (1967). The effect of culture conditions on the hydrocarbon content ofChlorella vulgaris. Journal of Phycology 3: 22-23, 2 figs.
Perez-Garcia, O., Bashan, Y. & Puente, M.E. (2011). Organic carbon supplementation of sterilized municipal wastewater is essential for heterotrophic growth and removing ammonium by the microalga Chlorella vulgaris. Journal of Phycology 47(1): 190-199.
Perez-Garcia, O., de-Bashan, L.E., Hernandez, J.-P. & Bashan, Y. (2010). Efficiency of growth and nutrient uptake from wastewater by heterotrophic, autotrophic, and mixotrophic cultivation of Chlorella vulgaris immobilized with Azospirillum brasilense. Journal of Phycology 46(4): 800-812.
Petrea, V. (1975). Wirkung des Schwefelschwarzes auf einige physiologische Prozesse der Alge Chlorella vulgaris.. : 115-120. [in German]
Post, A.F., Cohen, I. & Romem, E. (1994). Characterization of two Chlorella vulgaris (Chlorophyceae) strains isolated from wastewater oxidation ponds. Journal of Phycology 30: 950-954, 5 figs, 2 tables.
Pszczólkowska, A., Pszczólkowska, W. & Romanowska-Duda, Z. (2019). Potential of Chlorella vulgaris culture for waste treatment from anaerobic biomass biodigestion at the Piaszczyna (Poland) integrated facility. Journal of Phycology 55(4): 816-829.
Puglisi, I., Barone, V., Sidella, S., Coppa, M., Broccanello, C., Gennari, M. & Baglieri A. (2018). Biostimulant activity of humic-like substances from agro-industrial waste on Chlorella vulgaris and Scenedesmus quadricauda. European Journal of Phycology 53(3): 433-442.
Rachlin, J.W. & Grosso, A. (1991). The effects of pH on the growth of Chlorella vulgaris and its interactions with Cadmium toxicity. Arch Environ Contam Toxicol 20(4): 505-508.
Ramos Targarona, R. & Pizarro, R. (2018). Crecimiento y capacidad de biorremediación de Chlorella vulgaris (Trebouxiophyceae, Chlorophyta) cultivada en aguas residuales generadas en el cultivo del pez dorado Seriola lalandi (Perciformes: Carangidae). Revista de Biologia Marina y Oceanografia 53(1): 75-86.
Ting, Y.P., Lawson, F. & Prince, I.G. (1991). Uptake of Cadmium and Zinc by the alga Chlorella vulgaris .2. Multi-ion situation. Biotechnol Bioeng 37(5): 445-455.
Vinarova, K., Chankova, S. & Jordanova, S. (1983). Ultrastructure and pigment composition of 2 Chlorella vulgaris B mutant forms. Genetika i Selektsiya 16: 151-156.
Wang, B., Chen, M., Zheng, M. & Qiu, Y. (2020). Responses of two coastal algae (Skeletonema costatum and Chlorella vulgaris to changes in light and iron levels. Journal of Phycology 56(3): 618-629.
Wenzel, W., and Krienitz, L. (1975). Zu einigen Ergebnissen von Untersuchungen mit Reinkulturstämmen der Species Chlorella vulgaris Beijernick.. : 233-242. [in German]
Zaidi, B. R. & Tosteson, T. R. (1972). Differential adhesion of Chlorella vulgaris during the cell cycle. Proceedings of the International Seaweed Symposium 7: 323-328.
Zhao, J., Yang, L., Zhou, L., Bai, Y., Wang, B., Hou, P., Xu, Q., Yang, W. & Zuo, Z. (2016). Inhibitory effects of eucalyptol and limonene on the photosynthetic abilities in Chlorella vulgaris (Chlorophyceae). Phycologia 55(6): 696-702.

Linking to this page: http://www.algaebase.org/search/species/detail/?species_id=27676

Citing AlgaeBase
Cite this record as:
M.D. Guiry in Guiry, M.D. & Guiry, G.M. 2021. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org; searched on 17 September 2021.

SITE © 1996 - 2021 M.D. Guiry. All rights reserved.

Website Design : 249 Design Studio