156,756 species and infraspecific names are in the database, 22,033 images, 60,593 bibliographic items, 449,800 distributional records.

Species References

Chlorella vulgaris Beyerinck [Beijerinck]

References
(Please note: only references with the binomials in the title are included. The information is from the Literature database.)

Cacco, G. & Ferrari, G. (1975). Isolation of nitrosoguanidine-induced Chlorella vulgaris mutants with high methionine content. Journal of Phycology 11: 139-141, 3 tables.
Caporgno, M.P., Olkiewicz, M., Fortuny, A., Stuber, F., Fabregat, A., Font, J., Pruvost, J., Lepine, O., Legrand, J. & Bengoa, C. (2016). Evaluation of different strategies to produce biofuels from Nannochloropsis oculata and Chlorella vulgaris. Fuel Processing Technology 144: 132-138.
Chia, M.A., Lombardi, A.T., Da Graca Gama Melao, M. & Parrish, C.C. (2013). Effects of cadmium and nitrogen on lipid composition of Chlorella vulgaris (Trebouxiophyceae, Chlorophyta). European Journal of Phycology 48(1): 1-11.
Coder, D.M. & Starr, M.P. (1978). Antagonistic association of the chlorellavorus bacterium ("Belloviobrio" chlorellavorus) with Chlorella vulgaris. Cur. Microbiol. 1: 59-64.
Creed, I.F., Havas, M. & Trick, C.G. (1990). Effects of arsenate on growth of nitrogen- and phosphorus-limited Chlorella vulgaris (Chlorophyceae) isolates. Journal of Phycology 26: 641-650.
de-Bashan, L.E., Antoun, H. & Bashan, Y. (2008). Involvement of indole-3-acetic acid produced by the growth-promoting bacterium Azospirillum spp. in promoting growth of Chlorella vulgaris. Journal of Phycology 44: 938-947.
de-Bashan, L.E., Magallon, P., Antoun, H. & Bashan, Y. (2008). Role of glutamate dehydrogenase and glutamine synthetase in Chlorella vulgaris during assimilation of ammonium when jointly immobilized with the microalgae-growth-promoting bacterium Azospirillum brasilense. Journal of Phycology 44: 1188-1196.
de-Bashan, L.E., Schmid, M., Rothballer, M., Hartmann, A. & Bashan, Y. (2011). Cell-cell interaction in the eukaryote-prokaryote model of the microalgae Chlorella vulgaris and the bacterium Azospirillum brasilense immobilized in polymer beads. Journal of Phycology 47(6): 1350-1359.
Eixler, S., Karsten, U. & Selig, U. (2006). Phosphorus storage in Chlorella vulgaris (Trebouxiophyceae, Chlorophyta) cells and its dependence on phosphate supply. Phycologia 45: 53-60.
Escapa, C., Coimbra, R.N., Paniagua, S., García, A.I. & Otero, M. (2017). Comparison of the culture and harvesting of Chlorella vulgaris and Tetradesmus obliquus for the removal of pharmaceuticals from water. Journal of Applied Phycology 29(3): 1179-1193.
Evens, T.J. & Niedz, R.P. (2010). Quantification of nutrient-replete growth rates in five-ion hyperspace for Chlorella vulgaris (Trebouxiophyceae) and Peridinium cinctum (Dinophyceae). European Journal of Phycology 45(3): 247-257.
Gouveia, L., Choubert, G., Gomes, E., Rema, P. & Empis, J. (1998). Use of Chlorella vulgaris as a carotenoid source for rainbow trout: effect of dietary lipid content on pigmentation, digestibility and retention in the muscle tissue.. Aquaculture International 6: 269-279.
Hosmani, S.P. (1976). Effect of extract of Microcystis aeruginosa on the growth of Chlorella vulgaris. Beitr. Biol. Pflanzenphysiol 51: 321-324.
Kong, S.-K. & Toshiuki, N. (2002). Activity of Chlorella vulgaris associated by Escherichia coli W3110 on removal of total organic carbon in continuous river water flow system. Algae 17(3): 195-199, 4 figs, 2 tables.
Maeda, S., Mizoguchi, M., Ohki, A. & Takeshita, T. (1990). Bioaccumulation of Zinc and Cadmium in freshwater alga, Chlorella vulgaris .1. toxicity and accumulation. Chemosphere 21(8): 953-963.
Maeda, S., Mizoguchi, M., Ohki, A., Inanaga, J. & Takeshita, T. (1990). Bioaccumulation of Zinc and Cadmium in freshwater alga, Chlorella vulgaris .2. association mode of the metals and cell tissue. Chemosphere 21(8): 965-973.
Mahdy, A., Méndez, L., Tomás-Pejó, E., Morales, M.M., Ballesteros, M. & González-Fernández, C. (2016). Influence of enzymatic hydrolysis on the biochemical methane potential of Chlorella vulgaris and Scenedesmus sp. Journal of Chemical Technology and Biotechnology 91(5): 1299-1305.
Martinez, F., Ascaso, C. & Orus, M.I. (1991). Morphometric and stereologic analysis of Chlorella vulgaris under heterotrophic growth conditions. Ann Bot 67(3): 239-245.
Muñoz, M.J., Ramos, C. & Tarazona, J.V. (1996). Bioaccumulation and toxicity of hexachlorobenzene in Chlorella vulgaris and Daphnia magna. Aquatic Toxicology 35: 211-220.
Müller, J., Friedl, T., Hepperle, D., Lorenz, M. & Day, J.G. (2005). Distinction between multiple isolates of Chlorella vulgaris (Chlorophyta, Trebouxiophyceae) and testing for conspecificity using amplified fragment length polymorphism and ITS rDNA sequences. Journal of Phycology 41: 1236-1247.
Nasir, N.T.B.M., Sahin, S., Cakmak, Z.E. & Cakmak, T. (2017). Optimization of ultrasonic-assisted extraction via multiresponse surface for high antioxidant recovery from Chlorella vulgaris (Chlorophyta). Phycologia 56(5): 561-569.
Oyamada, N., Takahashi, G. & Ishizaki, M. (1991). Methylation of inorganic selenium compounds by freshwater green algae, Ankistrodesmus sp., Chlorella vulgaris and Selenastrum sp.. Eisei Kagaku-Japan J Tox Envi 37(2): 83-88.
Patterson, G.W. (1967). The effect of culture conditions on the hydrocarbon content ofChlorella vulgaris. Journal of Phycology 3: 22-23, 2 figs.
Perez-Garcia, O., Bashan, Y. & Puente, M.E. (2011). Organic carbon supplementation of sterilized municipal wastewater is essential for heterotrophic growth and removing ammonium by the microalga Chlorella vulgaris. Journal of Phycology 47(1): 190-199.
Perez-Garcia, O., de-Bashan, L.E., Hernandez, J.-P. & Bashan, Y. (2010). Efficiency of growth and nutrient uptake from wastewater by heterotrophic, autotrophic, and mixotrophic cultivation of Chlorella vulgaris immobilized with Azospirillum brasilense. Journal of Phycology 46(4): 800-812.
Post, A.F., Cohen, I. & Romem, E. (1994). Characterization of two Chlorella vulgaris (Chlorophyceae) strains isolated from wastewater oxidation ponds. Journal of Phycology 30: 950-954, 5 figs, 2 tables.
Pszczólkowska, A., Pszczólkowska, W. & Romanowska-Duda, Z. (2019). Potential of Chlorella vulgaris culture for waste treatment from anaerobic biomass biodigestion at the Piaszczyna (Poland) integrated facility. Journal of Phycology 55(4): 816-829.
Puglisi, I., Barone, V., Sidella, S., Coppa, M., Broccanello, C., Gennari, M. & Baglieri A. (2018). Biostimulant activity of humic-like substances from agro-industrial waste on Chlorella vulgaris and Scenedesmus quadricauda. European Journal of Phycology 53(3): 433-442.
Rachlin, J.W. & Grosso, A. (1991). The effects of pH on the growth of Chlorella vulgaris and its interactions with Cadmium toxicity. Arch Environ Contam Toxicol 20(4): 505-508.
Ramos Targarona, R. & Pizarro, R. (2018). Crecimiento y capacidad de biorremediación de Chlorella vulgaris (Trebouxiophyceae, Chlorophyta) cultivada en aguas residuales generadas en el cultivo del pez dorado Seriola lalandi (Perciformes: Carangidae). Revista de Biologia Marina y Oceanografia 53(1): 75-86.
Ting, Y.P., Lawson, F. & Prince, I.G. (1991). Uptake of Cadmium and Zinc by the alga Chlorella vulgaris .2. Multi-ion situation. Biotechnol Bioeng 37(5): 445-455.
Vinarova, K., Chankova, S. & Jordanova, S. (1983). Ultrastructure and pigment composition of 2 Chlorella vulgaris B mutant forms. Genetika i Selektsiya 16: 151-156.
Zaidi, B. R. & Tosteson, T. R. (1972). Differential adhesion of Chlorella vulgaris during the cell cycle. Proceedings of the International Seaweed Symposium 7: 323-328.
Zhao, J., Yang, L., Zhou, L., Bai, Y., Wang, B., Hou, P., Xu, Q., Yang, W. & Zuo, Z. (2016). Inhibitory effects of eucalyptol and limonene on the photosynthetic abilities in Chlorella vulgaris (Chlorophyceae). Phycologia 55(6): 696-702.

Back to Species Details

Website contents © 1996 - 2019 M.D. Guiry. All rights reserved.

Website Design : 249 Design Studio