163,902 species and infraspecific names are in the database, 22,783 images, 63,102 bibliographic items, 484,277 distributional records.

Phaeodactylum tricornutum Bohlin 1898

Classification:
Empire Eukaryota
Kingdom Chromista
Phylum Bacillariophyta
Class Bacillariophyta classis incertae sedis
Order Bacillariophyta ordo incertae sedis
Family Phaeodactylaceae
Genus Phaeodactylum

Pictures

click on thumbnail for larger version.

Phaeodactylum tricornutum Bohlin
Cultured plants from the University of Konstanz. Scale bar is 10 µm . 07 Apr 2011. Ansgar Gruber. © Ansgar Gruber (ansgar.gruber@uni-konstanz.de).

 

Halimeda hederacea (E.S.Barton) Hilis-Colinvaux

Phaeodactylum tricornutum Bohlin Cultured plants from the University of Konstanz. Scale bar is 10 µm
© Ansgar Gruber (ansgar.gruber@uni-konstanz.de)

Publication details
Phaeodactylum tricornutum Bohlin 1898: 520, fig. 9

Published in: Bohlin, K. (1898 '1897'). Zur Morphologie und Biologie einzelliger Algen. Öfversigt af Kongliga [Svenska] Vetenskadademiens Förhanligar, Stockholm 54: 507-529.

Type species
This is the type species (holotype) of the genus Phaeodactylum.

Status of name
This name is of an entity that is currently accepted taxonomically.

Type information
Type locality: Sweden (Index Nominum Algarum).

Heterotypic Synonym(s)
Nitzschia closterium f. minutissima Allen & Nelson 1910

Distributional notes
Graham et al. (2015) note that this is generally marine but record it from a lake in Wisconsin (97% identity). - (5 Aug 2015) - Wendy Guiry

Usage notes
Widely cultivated as food for larval molluscs and fish. - (10 Feb 2016) - M.D. Guiry

Lipid-rich diatom that contains a high level of omega-3 polyunsaturated fatty acids, especially eicosapentaenoic acid (EPA) (Cui et al. 2021). - (4 Jun 2021) - Wendy Guiry

General environment
This is a marine species.

Detailed distribution with sources (Click to Load)

Key references
Cheng Zhaodi & Gao Yahui [Cheng, Z.D. & Gao, Y.H.] (2012). Flora algarum marinarum sinicarum. Tomus V. Bacillariophyta No. I. Centricae. pp. [i-viii], i-xxvi, 1-137 plus 35 pls. Beijing: Science Press.

Cui, y., Thomas-Hall, S.R., Chua, E.T. & Schenk, P.M. (2021). Development of high-level omega-3 eicosapentaenoic acid (EPA) production from Phaeodactylum tricornutum. Journal of Phycology 57(1): 258-268.

Hendey, N.I. (1964). An introductory account of the smaller algae of British coastal waters. Part V: Bacillariophyceae (diatoms). pp. [i]-xxii, 1-317. London: Ministry of Agriculture, Fisheries and Food, Fishery Investigations. Her Majesty’s Stationery Office.

Sims, P.A. (ed.) (1996). An atlas of British diatoms arranged by B. Hartley based on illustrations by H.G. Barber and J.R. Carter. pp. [2], 1-601, incl. 290 pls. Bristol: Biopress Ltd.

Tomas, C.R., Eds (1996). Identifying marine diatoms and dinoflagellates. pp. 1-858. San Diego: Academic Press Inc.

Created: 23 April 2002 by M.D. Guiry

Verified by: 04 June 2021 by G.M. Guiry

Accesses: This record has been accessed by users 16529 times since it was created.

Verification of data
Users are responsible for verifying the accuracy of information before use, as noted on the website Content page.

References
(Please note: only references with the binomials in the title are included. The information is from the Literature database.)

Abdullahi, A.S., Underwood, G.J.C. & Gretz, M.R. (2006). Extracellular matrix assembly in diatoms (Bacillariophyceae) versus environmental effects on polysaccharide synthesis in the model diatom, Phaeodactylum tricornutum. Journal of Phycology 42: 363-378.
Allison, G. & Syrett, P.J. (1987). Note: The metabolism of guanine by the diatom Phaeodactylum tricornutum Bohlin. Journal of Phycology 23: 666-668, 1 fig.
Bartual, A. & Gálvez, J.A. (2002). Growth and biochemical composition of the diatom Phaeodactylum tricornutum at different pH and inorganic carbon levels under saturating and subsaturating light regimes. Botanica Marina 45: 491-501.
Bartual, A., Gálvez, J.A. & Ojeda, F. (2008). Phenotypic response of the diatom Phaeodactylum tricornutum Bohlin to experimental changes in the inorganic carbon system. Botanica Marina 51: 350-359.
Bartual, A., Villazán, B. & Brun, F.G. (2011). Monitoring the long-term stability of pelagic morphophytes in the model diatom Phaeodactylum tricornutum. Diatom Research 26(2): 243-253.
Beardall, J. & Morris, I. (1975). Effects of environmental factors on photosynthesis patterns in Phaeodactylum tricornutum (Bacillariophyceae). II. Effect of oxygen. Journal of Phycology 11: 430-434, 5 figs, 3 tables.
Behrenfeld, M.J., Hardy, J.T. & Lee, H., II (1992). Note: Chronic effects of ultraviolet-B radiation on growth and cell volume of Phaeodactylum tricornutum (Bacillariophyceae). Journal of Phycology 28: 757-760, 4 figs, 1 table.
Borowitzka, M.A. & Volcani, B.E. (1978). The polymorphic diatom Phaeodactylum tricornutum: ultrastructure of its morphotypes. Journal of Phycology 14: 10-21.
Borowitzka, M.A., Chiappino, M.L. & Volcani, B.E. (1977). Ultrastructure of a chain-forming diatom Phaeodactylum tricornutum. Journal of Phycology 13: 162-170.
Buhmann, M.T., Schulze, B., Förderer, A., Schleheck, D. & Kroth, P.G. (2016). Bacteria may induce the secretion of mucin-like proteins by the diatom Phaeodactylum tricornutum. Journal of Phycology 52(3): 463-474.
Cooksey, K.E. (1974). Acetate metabolism by whole cells of Phaeodactylum tricornutum Bohlin. Journal of Phycology 10: 253-257, 2 figs, 7 tables.
Cui, y., Thomas-Hall, S.R., Chua, E.T. & Schenk, P.M. (2021). Development of high-level omega-3 eicosapentaenoic acid (EPA) production from Phaeodactylum tricornutum. Journal of Phycology 57(1): 258-268.
Darley, W.M. (1968). Deoxyribonucleic acid content of the three cell types of Phaeodactylum tricornutum Bohlin. Journal of Phycology 4: 219-220, 1 table.
De Martino, A., Meichenin, A., Shi, J., Pan, K. & Bowler, C. (2007). Genetic and phenotypic characterization of Phaeodactylum tricornutum (Bacillariophyceae) accessions. Journal of Phycology 43(5): 992-1009.
Dinamarca, J., Levitan, O., Kumaraswamy, G.K., Lun, D.S. & Falkowski, P.G. (2017). Overexpression of a diacylglycerol acyltransferase gene in Phaeodactylum tricornutum directs carbon towards lipid biosynthesis. Journal of Phycology 53(2): 405-414.
Egue, F., Chenais, B., Tastard, E., Marchand, J., Hiard, S., Gateau, H., Hermann, D., Morant-Manceau, A., Casse, N. & Caruso, A. (2015). Expression of the retrotransposons Surcouf and Blackbeard in the marine diatom Phaeodactylum tricornutum under thermal stress. Phycologia 54(6): 617-627.
Fawley, M.W. (1984). Effects of light intensity and temperature interactions on growth characteristics of Phaeodactylum tricornutum (Bacillariophyceae). Journal of Phycology 20: 67-72, 6 figs, 1 table.
Fawley, M.W., Morton, S.J., Stewart, K.D. & Mattox, K.R. (1987). Evidence for a common evolutionary origin of light-harvesting fucoxanthin chlorophyll a/c - protien complexes of Pavlova gyrans (Prymnesiophyceae) and Phaeodactylum tricornutum (Bacillariophyceae). Journal of Phycology 23: 377-381.
Flynn, K.J. & Syrett, P.J. (1985). The uptake of nitrogenous compounds by Phaeodactylum tricornutum with particular reference to lysine uptake. British Phycological Journal 20: 185.
Geider, R.J., La Roche, J., Greene, R.M. & Olaizola, M. (1993). Response of the photosynthetic apparatus of Phaeodactylum tricornutum (Bacillariophyceae) to nitrate, phosphate, or iron starvation. Journal of Phycology 29: 755 -766, 5 figs.
Geider, R.J., Osborne, B.A. & Raven, J.A. (1985). Light dependance of growth and photosynthesis in Phaeodactylum tricornutum (Bacillariophyceae). Journal of Phycology 21: 609-619, 5 figs, 4 tables.
Geider, R.J., Osborne, B.A. & Raven, J.A. (1986). Growth, photosynthesis and maintenance metabolic cost in the diatom Phaeodactylum tricornutum at very low light levels. Journal of Phycology 22: 39-48, 5 figs, 3 tables.
Gilbert-López, B., Barranco, A., Herrero, M., Cifuentes, A. & Ibáñez, E. (2017). Development of new green processes for the recovery of bioactives from Phaeodactylum tricornutum. Food Research International 99: 1056-1065.
Glover, H. (1977). Effects of iron deficiency on Isochrysis galbana (Chrysophyceae) and Phaeodactylum tricornutum (Bacillariophyceae). Journal of Phycology 13: 208-212, 3 figs, 1 table.
Glover, H., Beardall, J. & Morris, I. (1975). Effects of environmental factors on photosynthesis patterns in Phaeodactylum tricornutum (Bacillariophyceae) I. Effect of nitrogen deficiency and light intensity. Journal of Phycology 11: 424-429, 1 fig, 7 tables.
Gutenbrunner, S., Thalhamer, J. & Schmid, A.-M.M. (1994). Proteinaceous and immunochemical distinctions between the oval and Fusiform morphotypes of Phaeodactylum tricornutum (Bacillariophyceae). Journal of Phycology 30: 129-136, 9 figs.
Hayward, J. (1968). Studies on the growth of Phaeodactylum tricornutum. IV. Comparison of different isolates. . J. Mar. Biol. Assn. U.K. 48: 657-666. [in English]
Huang, B., Marchand, J., Blanckaert, V., Lukomska, E., Ulmann, L., Wielgosz-Collin, G., Rabesaotra, V., Moreau, B., Bougaran, G., Mimouni, V. & Morant-Manceau, A. (2019). Nitrogen and phophorus limitations induce carbon partitioning and membrane lipid remodelling in the marine diatom Phaeodactylum tricornutum. European Journal of Phycology 54(3): 342-358.
Iwasa, K., Murakami, S., Shimizu, A. & Imahori, K. (1972). Mechanisms of dimorphism and motility of Phaeodactylum tricornutum Bohlin. Proceedings of the International Seaweed Symposium 7: 319-322.
Jiang, H. & Gao, K. (2004). Effects of lowering temperature during culture on the production of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum (Bacillariophyceae) (Note). Journal of Phycology 40: 651-654.
John-McKay, M. & B., Colman (1997). Note: Variation in the occurrence of external carbonic anhydrase among strains of the marine diatom Phaeodactylum tricornutum (Bacillariophyceae). Journal of Phycology 33: 988-990, 1 table.
Johnston, A.M. & Raven, J.A. (1991). The acquisition of inorganic carbon by Phaeodactylum tricornutum. British Phycological Journal 26: 89.
Johnston, A.M. & Raven, J.A. (1992). The acquisition of DIC by the marine diatom Phaeodactylum tricornutum. British Phycological Journal 27: 94.
Johnston, A.M. & Raven, J.A. (1996). Inorganic carbon accumulation by the marine diatom Phaeodactylum tricornutum. European Journal of Phycology 31: 285-290, 4 figs, 2 tables.
Krabs, G. & Büchel, C. (2011). Temperature and salinity tolerances of geographically separated Phaeodactylum tricornutum Bohlin strains: maximum quantum yield of primary photochemistry, pigmentation, proline content and growth. Botanica Marina 54(3): 231-241.
Kudo, I., Miyamoto, M., Noiri, Y. & Maita, Y. (2000). Combined effects of temperature and iron on the growth and physiology of the marine diatom, Phaeodactylum tricornutum (Bacillariophyceae). Journal of Phycology 36: 1096-1102.
Kusk, K.O. (1981). Effects of naphthalene on the diatom Phaeodactylum tricornutum grown under varied conditions. Botanica Marina 24: 485-487.
LaRoche, J. & Harrison, W.G. (1989). Reversible kinetic model for the short-term regulation of methylammonium uptake in two phytoplankton species, Dunaliella tertiolecta (Chlorophyceae) and Phaeodactylum tricornutum (Bacillariophyceae). Journal of Phycology 25: 36-48, 8 figs, 2 tables.
Larson, T.R. & Rees, T.A.V. (1996). Changes in cell composition and lipid metabolism mediated by sodium and nitrogen availability in the marine diatom Phaeodactylum tricornutum (Bacillariophyceae). Journal of Phycology 32: 388-393, 4 figs, 1 table.
Leyland, B., Zarka, A., Didi-Cohen, S., Boussiba, S. & Khozin-Goldberg, I. (2020). High resolution proteome of lipid droplets isolated from the pennate diatom Phaeodactylum tricornutum (Bacillariophyceae) strain Pt4 provides mechanistic insights into complex intracellular coordination during nitrogen deprivation. Journal of Phycology 56(6): 1642-1663.
Liang, Y., Beardall, J. & Heraud, P. (2006). Effect of UV radiation on growth, chlorophyll fluorescence and fatty acid composition of Phaeodactylum tricornutum and Chaetoceros muelleri (Bacillariophyceae). Phycologia 45: 605-615.
López Alonso, D., Segura del Castillo, C.I., García Sánchez, J.L., Sánchez Pérez, J.A. & Garcia Camacho, F. (1994). Quantitative genetics of fatty acid variation in Isochrysis galbana (Prymnesiophyceae) and Phaeodactylum tricornutum (Bacillariophyceae). Journal of Phycology 30: 553-558, 5 tables.
Lopez Alonso, D., Segura del Castillo, C.I., Molina Grima, E. & Cohen, Z. (1996). First insights into improvement of eicosapentaenoic acid content in Phaeodactylum tricornutum (Bacillariophyceae) by induced mutagenesis. Journal of Phycology 32: 339-345, 1 fig, 5 tables.
Lu, M. & Stephens, G.C. (1984). Demonstration of net influx of free amino acids in Phaeodactylum tricornutum using high performance liquid chromatography. Journal of Phycology 20: 584-589, 4 figs, 3 tables.
Mann, J.E. & Myers, J. (1968). On pigments, growth and photosynthesis of Phaeodactylum tricornutum. Journal of Phycology 4: 349-355, 8 figs, 2 tables.
Margulies, M.M. (1970). Changes in absorbance spectrum of the diatom Phaeodactylum tricornutum upon modification of protein structure. Journal of Phycology 6: 160-164, 6 figs.
Marsot, P., Cembella, A.D. & Colombo, J.C. (1991). Intracellular and extracellular amino acid pools of the marine diatom Phaeodactylum tricornutum (Bacillariophyceae) grown on unenriched seawater in high-cell-density dialysis culture. Journal of Phycology 27: 478-491, 7 figs, 2 tables.
Marsot, P., Mouhri, K., Loudiki, M., Fournier, R. & Kermasha, S. (1996). Effects of a sublethal concentration of triphenyltin chloride on nutrient uptake and productivity of Phaeodactylum tricornutum Bohlin in natural seawater. Botanica Marina 39: 217-221.
Materna, A.C., Sturm, S., Kroth, P.G. & Lavaud, J. (2009). First induced plastid genome mutations in an alga with secondary plastids: psbA mutations in the diatom Phaeodactylum tricornutum (Bacillariophyceae) reveal consequences on the regulation of photosynthesis. Journal of Phycology 45(4): 834-846.
Meiser, A.; Schmid-Staiger, U. & Trosch, W. (2004). Optimization of eicosapentenoic acid production by Phaeodactylum tricornutum in the flat panel airlift (FPA) reactor. Journal of Applied Phycology 16: 215-225.
Miyagawa, A., Okami, T., Kira, N., Yamaguchi, H., Ohnishi, K. & Adachi, M. (2009). High efficiency transformation of the diatom Phaeodactylum tricornutum with a promoter from the diatom Cylindrotheca fusiformis. Phycological Research 57(2): 142-146.
Natunen, K., Seppälä, J., Koivula, R.J. ^& Pellinan, J. (2017). Monitoring cell-specific neutral lipid accumulation in Phaeodactylum tricornutum (Bacillariophyceae) with Nile Red staining - a new method for FlowCAM. Journal of Phycology 53(2): 395-404.
Nelson, D.M., Riedel, G.F., Millan-Nunez, R. & Lara-Lara, J.R. (1984). Silicon uptake with no known Si requirement. I. True cellular uptake and pH-induced precipitation by Phaeodactylum tricornutum (Bacillariophyceae) abd Platymonas sp. (Prasinophyceae). Journal of Phycology 20: 141-147, 6 figs, 1 table.
Prestegard, S.K., Knutsen, G. & Herfindal, L. (2014). Adenosine content and growth in the diatom Phaeodactylum tricornutum (Bacillariophyceae): effect of salinity, light, temperature and nitrate. Diatom Research 29(4): 361-369.
Rees, A. & Syrett, P.J. (1978). The uptake of urea by Phaeodactylum tricornutum. British Phycological Journal 13: 205-206.
Rees, T.A.V. & Allison, V.J. (2006). Evidence for an extracellular l-amino acid oxidase in nitrogen-deprived Phaeodactylum tricornutum (Bacillariophyceae) and inhibition of enzyme activity by dissolved inorganic carbon. Phycologia 45: 337-342.
Rees, T.A.V. (2001). Effect of oilgomycin on dark respiration in the marine diatom Phaeodactylum tricornutum (Bacillariophyceae); implications for determination of maintenance respiration. Journal of Phycology 37: 59-63.
Rico, M., López, A., Santana-Casiano, J.M., González, A.G. & González-Dávila, M. (2013). Variability of the phenolic profile in the diatom Phaeodactylum tricornutum growing under copper and iron stress. Limnol. Oceanogr. 58: 144-152.
Riedel, G.F. & Nelson, D.M. (1985). Note: Silicon uptake by algae with no known Si requirement. II. Strong pH dependence of uptake kinetic parameters in Phaeodactylum tricornutum (Bacillariophyceae). Journal of Phycology 21: 168-171, 1 fig.
Santaeufemia, S., Torres, E., Mera, R. & Abalde, J. (2016). Bioremediation of oxytetracycline in seawater by living and dead biomass of the microalga Phaeodactylum tricornutum. Journal of Hazardous Materials 320: 315-325.
Shah, N. & Syrett, P.J. (1982). Uptake of guanine by the diatom, Phaeodactylum tricornutum. Journal of Phycology 18: 579-587, 8 figs, 2 tables.
Sharp, J.H., Underhill, P.A. & Hughes, D.J. (1979). Interaction (allelopathy) between marine diatoms: Thalassiosira pseudonana and Phaeodactylum tricornutum. Journal of Phycology 15: 353-362, 8 figs, 3 tables.
Stanley, M.S. & Callow, J.A. (2007). Whole cell adhesion strength of morphotypes and isolates of Phaeodactylum tricornutum (Bacillariophyceae). European Journal of Phycology 42(2): 191-197, 3 figs, 2 tables.
Syrett, P.J. & Peplinska, A.M. (1988). The effect of nickel and nitrogen deprivation on the metabolism of urea by the diatom Phaeodactylum tricornutum (Short Note). British Phycological Journal 23: 387-390, 1 fig, 1 table.
Tesson, B., Gaillard, C. & Martin-Jézéquel, V. (2009). Insights into the polymorphism of the diatom Phaeodactylum tricornutum Bohlin. Botanica Marina 52(2): 104-116, 9 figs, 1 table.
Torzillo, G., Faraloni, C., Silva, A.M., Kopecký, J., Pilny, J. & Masojidek, J. (2012). Photoacclimation of Phaeodactylum tricornutum (Bacillariophyceae) cultures grown outdoors in photobioreactors and open ponds. European Journal of Phycology 47(2): 169-181.
Willis, A., Chiovitti, A., Dugdale, T.M. & Wetherbee R. (2013). Characterization of the extracellular matrix of Phaeodactylum tricornutum (Bacillariophyceaea): structure, composition, and adhesive characteristics. Journal of Phycology 49(5): 937-949.
Willis, A., Eason-Hubbard, M., Hodson, O., Maheswari, U., Bowlwer, C. & Wetherbee, R. (2014). Adhesion molecules from the diatom Phaeodactylum tricornutum (Bacillariophyceae): genomic identification by amino-acid profiling and in vivo analysis. Journal of Phycology 50(5): 837-849.
Xu, X., Liu, J., Shi, Q., Mei, H., Zhao, Y. & Wu, H. (2016). Ocean warming alters photosynthetic responses of diatom Phaeodactylum tricornutum to fluctuating irradiance. Phycologia 55(2): 126-133.
Zaslavskaia, L.A., Lippmeier, J.C., Kroth, P.G., Grossman, A.R. & Apt, K.E. (2000). Transformation of the diatom Phaeodactylum tricornutum (Bacillariophyceae) with a variety of selectable marker and reporter genes. Journal of Phycology 36: 379-386.
Zhao, P., Gu, W., Huang, A., Wu, S., Liu, C., Huan, L., Gao, S., Xie, X. & Wang, G. (2018). Effect of iron on the growth of Phaeodactylum tricornutum via photosynthesis . Journal of Phycology 54(1): 34-43.
Zhao, Y., Wang, Y. & Quigg, A. (2015). The 24 hour recovery kinetics from N starvation in Phaeodactylum tricornutum and Emiliania huxleyi. Journal of Phycology 51(4): 726-738.

Linking to this page: http://www.algaebase.org/search/species/detail/?species_id=39314

Citing AlgaeBase
Cite this record as:
G.M. Guiry in Guiry, M.D. & Guiry, G.M. 2021. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org; searched on 24 October 2021.

SITE © 1996 - 2021 M.D. Guiry. All rights reserved.

Website Design : 249 Design Studio